

COURSE OVERVIEW ME0100-4D Valve Technology

Selection, Installation, Upgrading, Inspection, Maintenance, <u>Repair & Troubleshooting</u>

Course Title

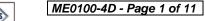
Valve Technology: Selection, Installation, Upgrading, Inspection, Maintenance, Repair & Troubleshooting

Course Date/Venue

November 25-28, 2024/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Course Reference ME0100-4D

Course Duration/Credits Four days/2.4 CEUs/24 PDHs



ilm

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt in the class will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Valve Selection, Installation & Maintenance. It covers the lubrication fitting and categorizing valves based on their function; the valve symbols, hydraulic pneumatic valves, motor, cylinders and directional control valves; the solenoid valve, typical valve and other valve designs; the various types of pressure control valves, check valves and control valve; and the characteristics of valve and control valve selection and sizing.

Further, the course will also discuss the control valve performance, process considerations, actuators and positioners; the fundamentals of pressure relief devices including the advantages and disadvantages of conventional valve and balanced bellows valve; the piston type pilot operated safety relief valve; the wetted area, heat absorption, vaporization rate and relief vent area; the causes of chatter, staggered PSV's and valve critical inspection, maintenance and testing; and the PRV repair and non-destructive testing including disc dismantling, assembly and disassembly.

During this interactive course, participants will learn the lapping procedure, grinding, assembly, valve sealing, installation, maintenance, troubleshooting and galling; the common valve problems, potential causes and water hammer; the valve testing and sealing, PRV adjustments, digital communications, cryogenic valves selection and proof testing and diagnostics; the characteristics of steam trap; and the online testing, calculation method, measurement method and visual inspection.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on valve selection, installation, upgrading, inspection, maintenance, repair and troubleshooting
- Identify lubrication fitting and categorize valves based on their function
- Discuss valve symbols, hydraulic pneumatic valves, motor, cylinders and directional control valves
- Recognize solenoid valve, typical valve and other valve designs
- Identify the various types of pressure control valves, check valves and control valve
- Describe the characteristics of valve and apply control valve selection and sizing
- Discuss control valve performance, process considerations, actuators and positioners
- Explain the fundamentals of pressure relief devices including the advantages and disadvantages of conventional valve and balanced bellows valve
- Recognize the piston type pilot operated safety relief valve as well as determine wetted area, heat absorption, vaporization rate and relief vent area
- Discuss the causes of chatter and staggered PSV's and apply valve critical inspection, maintenance and testing
- Carryout PRV repair and non-destructive testing including disc dismantling, assembly and disassembly
- Apply lapping procedure, grinding and assembly as well as valve sealing, installation, maintenance, troubleshooting and galling
- Identify the common valve problems, potential causes and water hammer
- Employ valve testing and sealing, PRV adjustments, digital communications, cryogenic valves selection and proof testing and diagnostics
- Discuss the characteristics of steam trap and apply online testing, calculation method, measurement method and visual inspection

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a **Tablet PC**.

ME0100-4D - Page 2 of 11

ME0100-4D-11-24|Rev.438|13 July 2024

Who Should Attend

This course provides an overview of all significant aspects and considerations of valve selection, installation, upgrading, inspection, maintenance, repair and troubleshooting for maintenance engineers, application engineers, inspection engineers, mechanical engineers, under-development engineers, electrical/electronics engineers, control systems and instrumentation engineers, production engineers, wellhead and drilling engineers and other technical staff.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **2.4 CEUs** (Continuing Education Units) or **24 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

• BAC British

BAC British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

ME0100-4D - Page 3 of 11

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Craig Nilsen, CMRP, CRCMP, RCM3, is a Senior Mechanical &

Maintenance & Reliability Engineer with over 30 years of extensive experience within the Manual Valves, Pressure Control Valves, Control Valve Selection, Valve Testing & Sealing, Oil & Gas, Refinery and Petrochemical industries. His wide expertise includes Maintenance Planning & Scheduling, Maintenance Planning Process, Maintenance Shutdown & Turnaround, Maintenance Audit Best Practices. Maintenance & Reliability Management, Reliability Engineering, Maintenance & Reliability Best Practices, Reliability, Availability & Maintainability (RAM), Root Cause Analysis, Maintenance Process, Reliability-Centered Maintenance (RCM), Reliability Engineering Analysis (RE), Root Cause Analysis (RCA), Asset Integrity Management (AIM), Reactive & Proactive Maintenance, Maintenance Process, Work Task Prioritization, Condition Monitoring, Mechanical Engineering, Mechanical Manufacturing Engineering, Mechanical Engineering Design, Electro Technology, Maintenance Planning, Parts Planning & Inventory Management, Computerized Maintenance Spare Management Systems (CMMS), Process Plant Shutdown & Turnaround, Maintenance Optimization & Best Practices, Reliability Centered Maintenance Principles & Application, Efficient Shutdowns, Turnaround & Outages, Process Plant Shutdown, Turnaround & Troubleshooting, Shutdown & Turnaround Management, Optimizing Equipment Maintenance & Replacement Decisions, Maintenance Management & Cost Control, Preventive & Predictive Maintenance, Effective Reliability Maintenance & Superior Maintenance Strategies, Integrity & Asset Management, Total Plant Reliability Maintenance, Vibration Measurement, Spare Parts & Materials Management, **Mechanical & Rotating Equipment** Troubleshooting & Maintenance, Rotating Equipment Reliability Optimization, Laser Alignment, Thermography, Risk Assessment, Legal Liability, Construction Regulations, Machine Vibration Analysis, Bag Filters Operation & Troubleshooting, Blower & Fan, Pumps, Valves, Bearings & Lubrication, Mechanical Seals, Mechanical Equipment Maintenance, Gearboxes, Shaft Alignment, Rotating Equipment, Preventive & Predictive Maintenance, Spare Management and Network Analysis.

During his career life, Mr. Nilsen gained his practical and field experience through his various significant positions and dedication as the Maintenance Engineer, Repair Shop Supervisor, Maintenance & Reliability Specialist, Maintenance Planner/Reliability Specialist, Senior Maintenance Planner/Condition Monitoring Specialist, Supply Chain Maintenance Planner, Technical Advisor, Senior Trainer/Lecturer, RCM3 Senior Consultant/Practitioner and Fitter & Turner for Algorax (Pty) Limited.

Mr. Nilsen has a National Higher Diploma in Mechanical Engineering. Further, he is a Certified Instructor/Trainer, a Certified Maintenance and Reliability Professional (CMRP) from the Society of Maintenance & Reliability Professionals (SMRP), a Certified Reliability Centered Management Professional (CRCMP) from the International Organization of RCM Professionals (IORCMP), a Certified Reliability Centered Maintenance 3 (RCM3) Professional from Aladon, USA and a Qualified Fitter & Turner. Moreover, he is an active member of the Society of Maintenance and Reliability Professionals (SMRP) and the South African Asset Management Association (SAMA). He has further delivered numerous trainings, courses, seminars, workshops and conferences internationally.

ME0100-4D - Page 4 of 11

Course Fee

US\$ 4,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Monday, 25 th of November 2024
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0900	<i>Lubrication Fitting Identification</i> Bearing Lubrication Fitting • Packing Injection Fitting • Drain Port/Cavity Lube Port • Seal Sealant Injection Port
0900 - 0930	Valves can be Broadly Categorized Based on their Function asStop (Isolation) ValvesRegulating ValvesBack-Flow Prevention Valves• Pressure-Relief Valves
0930 - 0945	Break
0945 – 1015	Working Fluid Liquid • Gas • Solids
1015 - 1100	Manual ValvesClassification of Valve on their Operating WayValve SymbolsRotatingValvesPlug ValvesBall ValvesButterfly ValvesGate ValvesDiaphragm Valve ComponentsFlexible ValvesPinch ValvesSolenoid ValveFoot ValveVaveCharacterization

ME0100-4D - Page 5 of 11

ME0100-4D-11-24|Rev.438|13 July 2024

	Hydraulic Pneumatic Valves
1100 – 1130	Fixed Displacement Hydraulic Pump • Variable Displacement Hydraulic
	Ритр
1130 – 1200	Motors
1150 - 1200	Pneumatic Motor • Rotary Actuator
1200 - 1230	Cylinders
1200 - 1230	Single Acting Cylinder • Double Acting Cylinders
1230 – 1245	Break
	Cylinders with Cushions
1245 - 1315	Single Fixed Cushion • Double Fixed Cushion • Single Adjustable Cushion •
	Double Adjustable Cushion
	Directional Control Valves
1315 - 1345	Electro-Hydraulic Servo Valve • Manual Control • Electrical Control •
	Flow Control Valve
	What is a Coil & How Does it Work?
1345 - 1420	How Does a Solenoid Valve Work • Style • Type • Design • Operators
	Actuator Control
	Recap
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 1400	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day One

Day 2:	<i>Tuesday, 26th of November 2024</i>
0730 - 0800	Typical Valve
0750 - 0800	Poppet Valves
	Other Valve Designs
0800 - 0830	Pressure Switches • Logic "or"/"and" Shuttle Valve • Flow Regulator •
0000 - 0050	Banjo Flow Regulator • Quick Exhaust Valve • Solenoid Valves • Principle
	of Operation • What Causes Solenoids to Fail
	Pressure Control Valves
	Types of Pressure Control Valves • Pressure Relief Valve (PRV) • Complete
	Circuit • Direct Relief Valve Performance • Pilot Operated Relief Valve •
0830 - 0900	Unloading Valve • Sequence Valve • Pressure-Reducing Valve •
	Counterbalance Valve • Safety Valve • How Failures Occur in Hydraulics
	Systems • Root Cause of Hydraulic Failures • Known Best Maintenance
	Practices "Hydraulics"
0900 - 0930	Check Valves
	<i>Operational Detail</i> • <i>The Main Types of Check Valves</i> • <i>Selection Criteria</i>
0930 - 0945	Break
0945 – 1030	Control Valve Types
	Rotary Valves • Butterfly Valves • Eccentric Disk Valves • Bidirectional
0010 1000	Tightness • Eccentric Rotary Plug Valves • Ball Valves • Plug Valves •
	Linear Valves Globe Valves Cage Valves
	Control Valve Theory
1030 – 1100	Definition of a Control Valve • Types of Energy • What Happens Inside a
ļ	Control Value Choked Flow Cavitation Flashing
	Characteristics & Trim
1100 - 1130	Valve Characteristics • Application Examples • Cavitation Control •
	Anti – Cavitation Trim • High Pressure Drop Applications • Low Noise
	Trim • Diffuser

ME0100-4D - Page 6 of 11

1130 - 1200	Control Valve SelectionDecision Criteria • Materials of Construction • Valve Characteristics •Actuator Considerations • Price Comparison • Selection Guidelines •Application Comparisons • Computer Sizing Programme
1200 - 1230	Control Valve SizingGeneral • Valve Coefficient (CV) • ISA Sizing Equation • SimplifiedSizing Equation • Comparison of Valve Types • Turndown versusRangeability
1230 – 1245	Break
1245 - 1315	Installed Gain as a Control Valve Sizing CriteriaControl Valve CharacteristicsInherent CharacteristicInstalledCharacteristic & GainSelecting the Right PumpInstalled
1315 - 1345	Control Valve PerformanceProcess Variability • Dead Time • Actuator / Positioner Design • ValveResponse Time • Valve Type & Characterisation • Valve Sizing
1345 - 1420	Process Considerations End Connections • Face to Face Criteria • Materials Selection • Modes of Failure • Leakage Rates • International Standards
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3:	Wednesday, 27 th of November 2024
0730 - 0800	Actuators & PositionersTypes of Actuators • Linear Actuators • Rotary Actuators • Actuator Forces• Positioners • Fail Safe Systems
0800 – 0830	<i>Accessories</i> <i>Auxiliary Handwheels</i> • <i>Pressure Regulators</i> • <i>Lock-Up Valves</i> • <i>ON-OFF</i> <i>Valve</i> • <i>Position Transmitters</i> • <i>Volume Booster</i> • <i>Limit Switches</i> • <i>Solenoid Valves</i>
0830 - 0930	Fundamentals of Pressure Relief DevicesWhat is the Hazard?What are Relief Events?Potential Lines of Defense• What is a Relief System?Why Use a Relief System?Pressure ReliefDevicesPressure TerminologySuperimposed Back PressureBuilt-UpBack PressureCode RequirementsRelief Design MethodologyLocatingReliefs - Where?Choosing Relief TypesGeneral Types of Safety ReliefValveDesignConventional Spring Loaded Safety Relief ValveAdvantages/Disadvantages Conventional ValveLoaded Safety Relief ValveAdvantages/Disadvantages Balanced BellowsValveValveValveAdvantages/Disadvantages Balanced BellowsValveValveAdvantages/Disadvantages Balanced Bellows
0930 - 0945	Break
0945 – 1015	Valve Critical InspectionsValve MaintenanceWhat is Preventative Maintenance?When to UsePreventative MaintenancePredictive MaintenanceObjectives of anInspection JobPRV Repair Flow ChartInspector's RoleMeasurement& Test EquipmentInspection MethodsPRV Spindle Inspection PointsDisk& Nozzle InspectionPRV GuideDisc HolderPRV SpringInspection PointsSpring Rate900 Series Disc Criteria Data Sheet6000 SeriesSample TravelerCritical Inspection

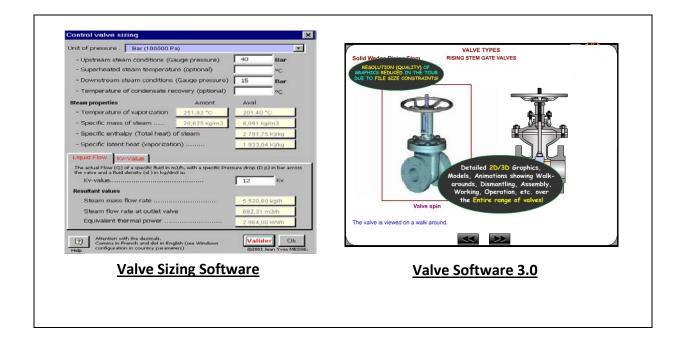
ME0100-4D - Page 7 of 11

	PRV Repair & Non-Destructive Examination
1015 – 1045	Pressure Relief Valve Repair • Critical Parts • Nozzle & Disc • Spring •
1015 - 1045	Adjusting Ring • Parts Providing Alignment • Lifting Devices • Safety
	Valve to Repair
	Check Tools
	Designated Use • V-Block • Dismantling Instructions for Type 526 API •
	Disc Disassembly with Sealing Plate \bullet Removing the Studs from the Body \bullet
1045 – 1115	Execution • Measures & Facing Profile • Surface Quality • Nondestructive
	Examination • Preparation for Valve Assembly • Assembly of Type 526 •
	Assembly of Disc Assembly • Assembly of the Adjusting Screw • Adjusting
	the Set Pressure • Body and Bonnet Connection
	Lapping, Grinding & Assembly
	Surface Quality • Lapping Objectives • Two Critical Elements of PRV
	Operation • Purpose of Lapping • Balance of Lapping • Ring Laps •
	Lapping Materials • Cleanliness • Lap Selection • Nozzle Seat Width •
1115 - 1145	PRV Lapping Procedure • Glass Plate • Technical Requirements • Technical
	Illustration • Monocrystalline Diamond Powder • Designated Use •
	Technical Requirements • Technical Illustration • Re-Lapping with a Glass
	Plate • Re-Lapping the Nozzle and the Disc • PRV Bearing Points •
	Assembly Objectives • Assemblers Responsibility • Assembly Operation • Sample Traveler
	Valve Sealing Solutions
	National Emission Standards for Equipment Leaks • Valve Sealing Solutions •
	Non- Asbestos Valve Sealing System • Electric Power Research Institute (EPRI) •
1145 1000	Causes of Valve Leakage • Volume Loss • Valve Design • Packing Material •
1145 - 1230	Pressure & Temperature • Temperature Cycling • Valve Actuation •
	Horizontally Mounted Valves • Valve Condition • Pitting • Maintenance
	Practices • Gland Packing • Second Service Category • Liveload • Balancing
	Control and Low Emissions
1230 - 1245	Break
1015 1015	Operational Issues
1245 - 1315	<i>General Review</i> • <i>Installation</i> • <i>Maintenance</i> • <i>Troubleshooting</i> •
	Corrosion • Galling Common Valve Problems
1015 1045	Water Hammer Effects • High Noise Levels • Noise Attenuation • Fugitive
1315 - 1345	Emissions
1345 - 1420	Control Valve Failures Potential Causes
	<i>Physical Failures</i> \bullet <i>Velocity Problems</i> \bullet <i>Erosion by Cavitation</i> \bullet <i>Erosion By</i>
1010 1120	Abrasion • Noise • Vibration
	Recap
1400 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 – 1430	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Three

ME0100-4D - Page 8 of 11

<u>Day 4:</u>	Thursday, 28 th of November 2024
0730 – 0800	Water Hammer Where Water Hammer Occurs • Conditions Causing Water Hammer • Hydraulic Shock • Thermal Shock • Differential Shock • Unsteady Flow in Pipes • Water Hammer Phenomenon in Pipelines • Some Typical Damages • Propagation of Water Hammer Pressure Wave • Analysis of Water Hammer Phenomenon
0800 - 0845	Valve Testing & SealingTesting ObjectivesASME RequirementsPRV Testing & AdjustmentsTesting & SealingDefinition of Set PressureLiquid Test - Definition ofOpenPRV Set Pressure on LiquidAbove Opening PressureMaximumOverpressure 110% of Set PressureAir Test PRVReaction ForceASME Code Requirement for PRV Seat Tightness TestingAPI 527PRVAdjustmentsTwo Ring/One Ring Design Ring Setting ChartSealingAdjustmentsSample TravelerField Testing AdviceAuxiliary LiftingDevicesOn Site Safety Valves Testing ScheduleSafety Valves Test Schedule for
0845 - 0930	Field CommunicationsAnalogue SignalsDigital Communications• Fieldbus Technologies
0930 - 0945	Break
0945 - 1015	Cryogenic Valves Selection of Cryogenic Valves • Material Considerations • Standards & Testing
1015 - 1045	<i>Fire Safe Valves</i> <i>Requirements</i> • <i>Sealing & Leakage</i> • <i>Design</i> • <i>Standards & Testing</i> • <i>Examples</i>
1045 – 1115	Strainers Y-Type Strainers • Basket Type Strainers • Strainer Screens
1115 - 1145	Proof Testing & Diagnostics Safety Instrumented Systems (An Overview) • Proof Testing • Partial Valve Stroking • Diagnostics
1145 – 1230	Steam TrapsCharacteristics of SteamSteam TrapTypical Steam Generation-Distribution-Recovery DiagramMechanical Steam TrapsInverted BucketSteam TrapsFloat & Thermostatic Steam TrapsThermostatic Steam TrapsBimetallic Steam TrapsBellows Steam TrapsThermodynamic SteamTrapsDisc Type Steam TrapsOrifice Type Steam TrapsSteam TrapSurveys: Methods-FrequencyMethods of DetectionRecommended SteamTrap Survey FrequencyRules of Thumb When Conducting Steam TrapProjects
1230 – 1245	Break
1245 - 1315	Online TestingPressures' ScalesCalculation's MethodMeasurement's MethodCalculation's ExampleGraph's ExampleGraph AnalysisFullyExplosion Proof EquipmentEquipment UsedVisual InspectionTestReportSome Fluids with which We WorkedOnline Safety Valve TestingApproved TechnologyCertified ContractorAdvantages of the on LineSafety Valve TestingCorrect Sizing of the Outline Line

ME0100-4D - Page 9 of 11



	Valves for Control of Steam Flow Rate
	What Do the Valves Do? • No Load Vs Full Load • Mounting of Valves •
	Why are So Many Valves Used? • The Full Load Conditions • Three
1315 – 1345	Important Parameters • Pressure Ratio • Steam Path • Main Steam System
	• Full Load Conditions: A Case Study • Variation of Initial Pressure, Main
	Steam Temperature, Reheat Steam Temperature & Condenser Vacuum • The
	Loss with the Exit Velocity Condenser Pressure Ratio
	Course Conclusion
1345 - 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulators (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art "Valve Sizing Software", "Valve Software 3.0", "Valvestar 7.2 Software" and "PRV²SIZE Software".

ME0100-4D - Page 10 of 11

telun sans inte bounersatur te		×						Fie Reports Refer	netilney neg Utaplaney Elice ()	a lavius heliasis			128130727.1
🗶 Calente zen sizzg ogand - Fan case										2000	1		1
Here case Use the ange to specify a type and size a	e ² e - em	é, de hend deurgh, the he	git af a nadum in	Per-ester ala	ng with alther related	\mathcal{M}				W FSIZE	ANDERSON	CROSBY	Variec
Celsulation type		Limetted									10		
Type of veccel		Herizottal				3			\$	1 Quick			
Vessel head design		Flat head			· Colorester	it.				ouick 🛃			
Vessel Claneter	0			ied.	E 17	/1				Start a New Quit	k Colculation		
vessel length peopled surface area of the vessel.	1.16			140 th						100 Anno 1000			10000
calculated Deposed surface area of the vessel, menual	*			181						k.			
Vessel wall temperature	74			-12						New			
Set pressure	. 9			09-4					100	Create a New Ta	2		
Temperature	1			-12						Create a new la	8	- 3	4 an 1999 - 1
Normal aperatinggae pressure	Pr.			2019 N	10 10								Contra a
Normal uperating gas temperature	2			-12	14 CH								
Coefficient of disublerge	Kd	C.875										an 100	
Ninmum value of factor F		6.858							6	Open			
Ninimum required mass flow	W			16,5		_				Open an Existing	Tea	100	0
Visioum required effective discharge area				(# ¹					-	open on Existing	ng		57.
							•					A . 57	
					est Pinet	Canval				Catalog: View Valve Cata			\Box
	_												
* [
									A 00/7	a # 2010 2011 Fjor New Control. No.	A spin second. Ministerals, red-	have and to register the number	similar trans
				oft						-	Softwa		

Г

Course Coordinator Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

ME0100-4D - Page 11 of 11

٦