

COURSE OVERVIEW IE1037-4D Industrial Process Measurement

Course Title

Industrial Process Measurement

Course Date/Venue

October 14-17, 2024/ Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Course Reference IE1037-4D

Course Duration/Credits Four days/2.4 CEUs/24 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using one of our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of fundamentals of industrial process measurement and control. It covers the concepts of process control and documentation industrial measurement systems that include process measurement, standard signals and instrumental performance terminology; and the pressure level flow measurements. measurement. measurement and temperature measurement.

During this interactive course, participants will learn the various types of control valves, feedback control strategies and advanced control strategies; the control system hardware comprising of pneumatcontroller, electronic controller, single loop controller, DCS, PLC and personal computers for control; and the smart field devices that include current practice, typical smart D/P transmitter, smart temperature transmitter system, benefits, etc.

IE1037-4D - Page 1 of 9

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and in-depth knowledge on fundamentals of industrial process measurement and control
- Discuss the concepts of process control and review documentation
- Recognize industrial measurement systems covering process measurement, standard signals and instrumental performance terminology
- Carryout pressure measurements, level measurement, flow measurement and temperature measurement
- Identify the various types of control valves and apply feedback control strategies and advanced control strategies
- Discuss control system hardware comprising of pneumatic controller, electronic controller, single loop controller, DCS, PLC and personal computers for control
- Identify smart field devices that include current practice, typical smart D/P transmitter, smart temperature transmitter system, benefits, etc

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview for all significant aspects and considerations of fundamentals of industrial process measurement and control for process control engineers and supervisors, instrumentation and control system engineers, automation engineers, instrumentation engineers and technologists. Further, process engineers, electrical engineers and supervisors and those involved in the design, implementation and upgrading of industrial control systems will also benefit from the practical aspects of this course.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

IE1037-4D - Page 2 of 9

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

ACCREDITED The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **2.4 CEUs** (Continuing Education Units) or **24 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

IE1037-4D - Page 3 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Attalla Ersan, PEng, MSc, BSc, is a Senior Engineer with over 35 years of extensive experience within the Oil & Gas, Hydrocarbon and Petrochemical industries. His expertise widely covers the areas of Power Transformers, Power System Analysis, Power Supply Substations, Electric Power System Operation, Fundamentals of Power System Equipment, Power System Stability, Power System Harmonics Analysis, Mitigation & Solution Strategies,

Power System, Generation & Distribution, AC & DC Motors, Substations, Switchgears & Distribution, Electro-mechanical Protection Relays, Engineering Drawings, Industrial Power System Coordination, Distributed Control System (DCS), Honeywell TDS 3000 DCS, Liquid and Gas Flowmetering, Meter Calibration, Process Analyzer & Analytic Instrumentation, Process Control, Instrumentation, Troubleshooting & Problem Solving, Process Plant Operations, Process Plant Startup & Operating Procedure, Control Room Emergency Response, SIL Criteria, Calibration & Configuration of Installed Instrumentation, PLC & DCS, Bearing Replacement, Control Valves, Emergency Response Planning, Boiler & Steam System Management, Process Control Design & Plant Modelling, Process Instrumentation & Automation, Process Control Instrumentation, Analyzer Measurement Systems, Pressure Management and Selection & Sizing of all Instrumentation. Further, he is also well-versed in Permit to Work System, Hazard and Operability (HAZOP) Study, Process Hazards Analysis (PHA), HAZOP Facilitation, Loss Prevention, Consequence Analysis Application, Gas Detectors Operation, Accident/Incident Investigation (Why Tree Method), Occupational Exposure Assessment, Fire Fighting & First Aid, Environmental Management and Basic Safety Awareness. Project Management, Human Resources Consultancy, Manpower Planning, Job Design & Evaluation, Recruitment, Training & Development and Leadership, Creative Problem-Solving Skills, Work Ethic, Job Analysis Evaluation, Training & Development Needs, Bidding & Tendering, Technical Report Writing, Supervisory Leadership, Effective Communication Skills and Total Quality Management (TQM). He is currently the CEO of Ersan Petrokimya Teknoloji Company Limited wherein he is responsible for the design and operation of Biogas Process Plants.

During his career life, Mr. Ersan has gained his practical and field experience through his various significant positions and dedication as the **Policy**, **Organization & Manpower Development Head**, **Training & Development**, **Head**, **Ethylene Plant – Pyrolysis Furnace Engineer**, **Production Engineer**, Process Training Coordinator, Ethylene Plant Shift Supervisor, Ethylene Plant Panel & Fit Operator, Process Training & Development Coordinator, **Technical Consultant**, and **Instructor/Trainer** for Qatar Vinyl Company Limited and Qatar Petroleum Company (QAPCO).

Mr. Ersan is a **Registered Professional Engineer** and has a **Master's degree** of **Education** in **Educational Training & Leadership** and a **Bachelor's degree** of **Petrochemical Engineering**. Further, he is a **Certified Instructor/Trainer** and has delivered numerous trainings, courses, workshops, conferences and seminars internationally.

IE1037-4D - Page 4 of 9

Course Fee

US\$ 4,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Monday 14 th of October 2024
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 0030	Concepts of Process Control
0850 - 0950	Typical Industries • Definitions
0930 - 0945	Break
0045 1100	Concepts of Process Control (cont'd)
0943 - 1100	Continuous vs. Batch • Feedback Loop
	Documentation
1100 – 1215	Instrument Line Symbols • Function Symbols • Identification Letters
	Piping & Instrumentation Drawing (P&ID) Loop Diagram
1215 – 1230	Break
	Industrial Measurement Systems
1230 1/20	Process Measurement • Standard Signals • Instrument Performance
1230 - 1420	Terminology • Repeatability and Accuracy • Zero, Span & Linearity Errors
	Calibration Chart
1420 – 1430	Recap
1430	Lunch & End of Day One

Day 2:	Tuesday 15 th of October 2024
0730 – 0930	Pressure Measurements Concepts • Instruments • Differential Pressure Measurement • Pascal's Law • Absolute and Atmospheric Pressure • Relationship between Pressure and Column of Liquid
0930 - 0945	Break
0945 – 1100	Pressure Measurements (cont'd) Hydrostatic Head Pressure • U-Tube and Well Manometers • Bourdon Pressure Gage • Spiral and Helical Elements • Bellows and Diaphragm Elements
1100 – 1215	Level MeasurementDip Stick Level MeasurementBasic Sight GlassesFloat and CableArrangementsUltrasonicCapacitance ProbeRadiation PointRotatingPaddleRadar Level SystemInterface MeasurementHydrostaticPressureOpen Tank LevelZero Suppression/ElevationAir BubblerSystem
1215 – 1230	Break

IE1037-4D - Page 5 of 9

	Flow Measurement
	Types of Flow • Reynolds Number • Differential Pressure Flowmeters
	• Concentric and Eccentric Orifaces • Flow Nozzle • Venturi and Pitot
	Tubes • Target Flowmeter •Rotameter or Variable Area Meter • Magnetic,
1230 – 1420	<i>Vortex, Turbine, and Ultrasonic Flowmeters</i> • <i>Doppler Effect</i> • <i>Flow Tube</i>
	Vibration and Twist • Coriolis and Thermal Mass Flowmeters • Positive
	Displacement Flowmeters • Rotary Vane, Oval Gear, and Nutating Disc
	Designs Open Channel Flow Measurement Weirs Parshall Flume
	Flowmeter Selection
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3:	Wednesday 16 th of October 2024
	Temperature Measurement
	Temperature Scales • Liquid-in-Glass, Filled Bulb, and Bimetallic
0730 - 0930	Thermometers • Resistance Temperature Detectors (RTDs) • Reference
	Junction Compensation • Thermocouplers • Immersion and Insertion
	Lengths Thermowells Thermistors
0930 - 0945	Break
	Control Valves
0945 – 1100	Types • Valve Characteristics • Inherent Flow Characteristics
	Actuators Air to Extend/Retract Positioners I/P Transducer
	Feedback Control Strategies
1100 – 1215	Control Hierarchy • Process Dynamics • Lags • Dead Time
	•Strategies • Direct/Reverse Acting
1215 – 1230	Break
	Feedback Control Strategies (cont'd)
1230 – 1420	On-Off Control • Controller Modes • Proportional Control/Action
	Level Control Offset Integral and Derivative Action Tuning
1420 - 1430	Recap
1430	Lunch & End of Day Three

Day 4:	Thursday 17" of October 2024
	Advanced Control Strategies
0730 – 0930	Control Hierarchy • Cascade Control • Applications: With and Without
	Cascade Ratio Control Feedforward Control
0930 - 0945	Break
	Control System Hardware
0945 – 1100	Pneumatic Controller • Electronic Controller • Single Loop Controller
	• Distributed Control System (DCS) • Programmable Logic Controller
	(PLC) • Personal Computers for Control
	Smart Field Devices
1100 – 1215	Current Practice • Typical Smart D/P Transmitter • Smart Temperature
	Transmitter System • Benefits
1215 – 1230	Break
	Smart Field Devices (cont'd)
1230 – 1345	Innovative Applications • Fieldbus Foundation - H1 & H2 • How is
	Fieldbus Different? • Fieldbus Control System (FCS)
1345 – 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

IE1037-4D - Page 6 of 9 IE1037-4D-10-24|Rev.08|18 July 2024

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using one of our state-of-the-art simulators "Allen Bradley SLC 500", "AB Micrologix 1000 (Digital or Analog)", "AB SLC5/03", "AB WS5610 PLC", "Siemens S7-1200", "Siemens S7-400", "Siemens SIMATIC S7-300", "Siemens S7-200", "GE Fanuc Series 90-30 PLC", "Siemens SIMATIC Step 7 Professional Software", "HMI SCADA", "Gas Ultrasonic Meter Sizing Tool", "Liquid Turbine Meter and Control Valve Sizing Tool", "Liquid Ultrasonic Meter Sizing Tool", "Orifice Flow Calculator" and "Automation Simulator".

Allen Bradley SLC 500 Simulator

Allen Bradley Micrologix 1000 Simulator (Analog)

Allen Bradley WS5610 PLC Simulator PLC5

IE1037-4D - Page 7 of 9

<u>Allen Bradley Micrologix 1000</u> <u>Simulator (Digital)</u>

Allen Bradley SLC 5/03

Siemens S7-1200 Simulator

Siemens S7-400 Simulator

Siemens SIMATIC S7-300

Siemens S7-200 Simulator

<u>GE Fanuc Series 90-30 PLC</u> <u>Simulator</u>

IE1037-4D - Page 8 of 9

Gas Ultrasonic Meter (USM) Sizing <u>Tool Simulator</u>

Liquid Ultrasonic Meter Sizing Tool Simulator

Turbine Meter Selection				Valve Selection								
Project Title	/Tag	Fluid Lis	Fluid st Gasoline			-	Specific Gravity 0.72 Sp	/ Density ecific Gravity	•	Viscosity	Centistoke	•
Flow Rate	Minimum	200	Operating	400	Maximum	600	Units Gallons		•	Per Min.	le 💌	
Temperature		20		60		100	€ °F	0.0				
Pressure				60		100	PSI		•			
ter Selection Turbine (Meter (○ Series 12 ○ Series 15	200 500										

Liquid Turbine Meter and Control Valve Sizing Tool Simulator

Orifice Flow Calculator Simulator

AutoSIM – 200 Automation Simulator

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

IE1037-4D - Page 9 of 9

