

COURSE OVERVIEW DE0125-4D Matrix Stimulation

Course Title

Matrix Stimulation

Course Date/Venue

Session 1: August 19-22, 2024/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Session 2: November 25-28, 2024/Ajman Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference

DE0125-4D

Course Duration/Credits

Four days/2.4 CEUs/2.4 PDHs

Course Description

This practical and highly-interactive includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

Matrix stimulation is a treatment designed to treat the near-wellbore reservoir formation rather than other areas of the production conduit, such as the casing across the production interval, production tubulars or the perforations. Matrix stimulation treatments include acid, solvent and chemical treatments to improve the permeability of the near-wellbore formation, enhancing the productivity of a well. Matrix stimulation is a process of injecting a fluid into the formation, either an acid or solvent at pressures below the fracturing pressure, to improve the production or injection flow capacity of a well.

This course is designed to provide participants with a detailed and up-to-date overview of matrix stimulation. It covers the formation characterization; the nature of formation damage; the acidizing fluids selection; the fluid placement and diversion in sandstone acidizing; the matrix acidizing treatment; the principles of acid fracturing; the mechanics of acid fracture propagation; and the acidizing techniques for extended reach and horizontal wells.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain systematic techniques and methodologies on matrix stimulation
- Identify the formation characterization and illustrate the nature of formation damage
- Select acidizing fluids and implement fluid placement and diversion in sandstone acidizing
- Evaluate the matrix acidizing treatment and explain the principles of acid fracturing
- Illustrate the mechanics of acid fracture propagation and implement acidizing techniques for extended reach and horizontal wells

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a Tablet PC.

Who Should Attend

This course covers systematic techniques and methodologies on matrix stimulation for production engineers and other petroleum industry professionals who are involved in the important activities of reservoir evaluation, development and management and for those who require invaluable skills in the application of the techniques described for the successful exploitation of oil and gas reservoirs.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

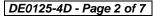
20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 6,750 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation


Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 2.4 CEUs (Continuing Education Units) or 24 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Victor Saran, MSc, BSc, is a Senior Drilling & Petroleum Engineer with over 40 years of offshore & onshore experience within the Oil & Gas and Petroleum industries. His wide expertise covers Wellhead Testing & Operations, Well Stimulation & Reservoir Management, Well Performance, Well Servicing, Well Killing Procedures, Well Completion, Well Fracturing, Well Testing, Acid Additives, Perforating Techniques, Sandstone Acidizing, Carbonate Acidizing, Acid

Fracturing, Production Engineering, Well Monitoring & Testing, Applied Reservoir Engineering, Water Flooding, Workover & Completions, Injection Systems, Artificial Lift Systems, Gas Lift, ESP, Rod Pumping, Production Testing & Optimization, Slickline and Electric Line Operations, Perforating & Logging, Coiled Tubing Operations, Nozzles, Motors, Deposits Removal & Inhibition and Asphaltnes-Sulphates, Workover Completion, Water Injection & Gas Lift, Nodal Analysis, Drill Stem Testing, H2S Crude Oil and Oil & Gas Production. Further, he is also well-versed in risk assessments, pipelines construction, pump & loading terminals, material and services procurement, budgeting, contracts & logistics, safety and personnel issues, tendering procedures, budget and work program, cost control—cost recovery, selection of materials and services and quality control. Currently, he is the Country Manager of Energean Oil & Gas wherein he is responsible in organizing and supervising the drilling of exploration wells and well connections and testing.

During Mr. Saran's life, he has gained his practical and field experience through his various significant positions the **Completions** Consultant. as Lecturer/Instructors, Part-Time Assistant Lecturer, Part-Time Instructor, Technical Consultant, Drilling & Workover Manager, Production Manager, Production Engineer, Petrochemical Engineer, Mechanical Engineer, Petroleum Services Engineer for numerous international companies and universities that includes Lukoil Neftochim, J&P Avax, Kavala Oil Greece, North Aegean Petroleum Company, Petrola International, Dowell Schlumberger, Technological Institute of Kavala, University of Thessaloniki and University of Crete.

Mr. Saran has a Master's degree in Fuel Technology and a Bachelor's degree in Mechanical Engineering from the University of Portsmouth Polytechnic, UK and the University of Westminster London, UK respectively. Further, he is a Certified Instructor/Trainer, a Certified Trainer/Assessor by the Institute of Leadership & Management (ILM) and has conducted numerous trainings, workshops and conferences worldwide.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day 1	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830- 0930	Overview of Reservoir Stimulation Inflow Performance • Alterations in the Near-Wellbore Zone • Tubing Performance & NODAL* Analysis • Decision Process for Well Stimulation • Reservoir Engineering Considerations for Optimal Production Enhancement Strategies • Stimulation Execution
0930 - 0945	Break
0945 – 1100	Formation Characterization Pressure Derivative in Well Test Diagnosis • Parameter Estimation from Pressure Transient Data • Test Interpretation Methodology • Analysis with Measurement of Layer Rate • Layered Reservoir Testing • Testing Multilateral & Multibranch Wells • Permeability Determination from a Fracture Injection Test
1100 – 1230	Formation Characterization (cont'd) Rock Behavior ● Rock Mechanical Property Measurement ● State of Stress in the Earth ● In-Situ Stress Management ● Depth ● Temperature ● Properties Related to the Diffusion of Fluids ● Properties Related to the Deformation & Fracturing of Rock ● Zoning
1230 - 1245	Break
1245 – 1420	Nature of Formation Damage Pseudodamage vs Formation Damage ● True Formation Damage ● Origin of Formation Damage ● Damage Removal
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

	Acidizing Physics
0730 - 0930	Solid-Liquid Reaction Under No-Flow Conditions • Solid-Liquid Reaction
	with a Moving Fluid • Other Instabilities
0930 - 0945	Break
	Acidizing Physics (cont'd)
0945 - 1115	Practical Implications in Sandstone Acidizing • Practical Implications in
	Carbonate Acidizing
	Matrix Acidizing of Sandstones
1115 - 1245	Criteria for Fluid Selection • Organization of the Decision Tree • Preflush
	& Postflush
1245 - 1300	Break

1300 – 1420	Matrix Acidizing of Sandstones (cont'd) Acidizing Sandstones with Mud Acid ● Other Acidizing Formulations ● Matrix Acidizing Design
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

Day 3	
	Fluid Placement & Diversion in Sandstone Acidizing
0730 - 0930	Techniques of Fluid Placement • Diverting Agents • Laboratory
	Characterization of Diverting Agent Efficiency • Prediction of Efficiency at
	Reservoir Conditions
0930 - 0945	Break
	Matrix Acidizing Treatment Evaluation
0945 - 1115	Derivation of Bottomhole Parameters from Wellhead Measurements •
	Monitoring Skin Evolution During Treatment
1115 – 1245	Matrix Acidizing Treatment Evaluation (cont'd)
	The Prouvost & Economides Method • Discussion: Components of Pressure
	Response • Example Calculation
1245 - 1300	Break
	Principles of Acid Fracturing
	Comparison of Acid Fracturing vs Fracturing with Propping Agent &
1300 - 1420	Nonreactive Fluids • Factors Controlling the Effectiveness of Acid Fracturing
1300 - 1420	Treatments • Acid Fluid Loss • Acid Spending During Fluid Injection •
	Treatment Design • Acid Fracturing Treatment Models • Example
	Application of Acid Fracture Design
	Recap
1420 - 1430	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i>
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

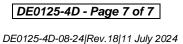
Day 4

0730 - 0930	Acid Fracture Propagation & ProductionMechanisms of Acid Penetration• Production Model• Production
	Behavior of Acid Fractures
0930 - 0945	Break
0945 – 1130	Acid Fracture Propagation & Production (cont'd)
	Performance Type Curves • Comparison Between Acid & Propped Fractures
1130 – 1230	Extended Reach & Horizontal Wells
	Performance Comparison Between Fully Completed Vertical & Horizontal
	Wells • Comparison of Fully Completed Horizontal Wells with Hydraulically
	Fractured Vertical Wells
1230 – 1245	Break

1245 – 1345	Extended Reach & Horizontal Wells (cont'd) Borehole Stability • Stimulation • Performance of Hydraulically Fractured Horizontal Wells
1345 – 1400	Course Conclusion Using this Course Overview, the Instructor(s) will Brief Participants about the Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-


<u>Course Coordinator</u>
Mari Nakintu, Tel: +971 2 30 91 714, Email: <u>mari1@haward.org</u>

